SecT193Field
using Org.BouncyCastle.Math.Raw;
using System;
namespace Org.BouncyCastle.Math.EC.Custom.Sec
{
internal static class SecT193Field
{
private const ulong M01 = 1;
private const ulong M49 = 562949953421311;
public static void Add(ulong[] x, ulong[] y, ulong[] z)
{
z[0] = (x[0] ^ y[0]);
z[1] = (x[1] ^ y[1]);
z[2] = (x[2] ^ y[2]);
z[3] = (x[3] ^ y[3]);
}
public static void AddBothTo(ulong[] x, ulong[] y, ulong[] z)
{
z[0] ^= (x[0] ^ y[0]);
z[1] ^= (x[1] ^ y[1]);
z[2] ^= (x[2] ^ y[2]);
z[3] ^= (x[3] ^ y[3]);
}
public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz)
{
zz[0] = (xx[0] ^ yy[0]);
zz[1] = (xx[1] ^ yy[1]);
zz[2] = (xx[2] ^ yy[2]);
zz[3] = (xx[3] ^ yy[3]);
zz[4] = (xx[4] ^ yy[4]);
zz[5] = (xx[5] ^ yy[5]);
zz[6] = (xx[6] ^ yy[6]);
}
public static void AddOne(ulong[] x, ulong[] z)
{
z[0] = (x[0] ^ 1);
z[1] = x[1];
z[2] = x[2];
z[3] = x[3];
}
public static void AddTo(ulong[] x, ulong[] z)
{
z[0] ^= x[0];
z[1] ^= x[1];
z[2] ^= x[2];
z[3] ^= x[3];
}
public static ulong[] FromBigInteger(BigInteger x)
{
return Nat.FromBigInteger64(193, x);
}
public static void HalfTrace(ulong[] x, ulong[] z)
{
ulong[] array = Nat256.CreateExt64();
Nat256.Copy64(x, z);
for (int i = 1; i < 193; i += 2) {
ImplSquare(z, array);
Reduce(array, z);
ImplSquare(z, array);
Reduce(array, z);
AddTo(x, z);
}
}
public static void Invert(ulong[] x, ulong[] z)
{
if (Nat256.IsZero64(x))
throw new InvalidOperationException();
ulong[] array = Nat256.Create64();
ulong[] array2 = Nat256.Create64();
Square(x, array);
SquareN(array, 1, array2);
Multiply(array, array2, array);
SquareN(array2, 1, array2);
Multiply(array, array2, array);
SquareN(array, 3, array2);
Multiply(array, array2, array);
SquareN(array, 6, array2);
Multiply(array, array2, array);
SquareN(array, 12, array2);
Multiply(array, array2, array);
SquareN(array, 24, array2);
Multiply(array, array2, array);
SquareN(array, 48, array2);
Multiply(array, array2, array);
SquareN(array, 96, array2);
Multiply(array, array2, z);
}
public static void Multiply(ulong[] x, ulong[] y, ulong[] z)
{
ulong[] array = Nat256.CreateExt64();
ImplMultiply(x, y, array);
Reduce(array, z);
}
public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz)
{
ulong[] array = Nat256.CreateExt64();
ImplMultiply(x, y, array);
AddExt(zz, array, zz);
}
public static void MultiplyExt(ulong[] x, ulong[] y, ulong[] zz)
{
Array.Clear(zz, 0, 8);
ImplMultiply(x, y, zz);
}
public static void Reduce(ulong[] xx, ulong[] z)
{
ulong num = xx[0];
ulong num2 = xx[1];
ulong num3 = xx[2];
ulong num4 = xx[3];
ulong num5 = xx[4];
ulong num6 = xx[5];
ulong num7 = xx[6];
num3 ^= num7 << 63;
num4 ^= ((num7 >> 1) ^ (num7 << 14));
num5 ^= num7 >> 50;
num2 ^= num6 << 63;
num3 ^= ((num6 >> 1) ^ (num6 << 14));
num4 ^= num6 >> 50;
num ^= num5 << 63;
num2 ^= ((num5 >> 1) ^ (num5 << 14));
num3 ^= num5 >> 50;
ulong num8 = num4 >> 1;
z[0] = (num ^ num8 ^ (num8 << 15));
z[1] = (num2 ^ (num8 >> 49));
z[2] = num3;
z[3] = (num4 & 1);
}
public static void Reduce63(ulong[] z, int zOff)
{
ulong num = z[zOff + 3];
ulong num2 = num >> 1;
z[zOff] ^= (num2 ^ (num2 << 15));
z[zOff + 1] ^= num2 >> 49;
z[zOff + 3] = (num & 1);
}
public static void Sqrt(ulong[] x, ulong[] z)
{
ulong even;
ulong num = Interleave.Unshuffle(x[0], x[1], out even);
ulong even2;
ulong num2 = Interleave.Unshuffle(x[2], out even2);
even2 ^= x[3] << 32;
z[0] = (even ^ (num << 8));
z[1] = (even2 ^ (num2 << 8) ^ (num >> 56) ^ (num << 33));
z[2] = ((num2 >> 56) ^ (num2 << 33) ^ (num >> 31));
z[3] = num2 >> 31;
}
public static void Square(ulong[] x, ulong[] z)
{
ulong[] array = Nat256.CreateExt64();
ImplSquare(x, array);
Reduce(array, z);
}
public static void SquareAddToExt(ulong[] x, ulong[] zz)
{
ulong[] array = Nat256.CreateExt64();
ImplSquare(x, array);
AddExt(zz, array, zz);
}
public static void SquareExt(ulong[] x, ulong[] zz)
{
ImplSquare(x, zz);
}
public static void SquareN(ulong[] x, int n, ulong[] z)
{
ulong[] array = Nat256.CreateExt64();
ImplSquare(x, array);
Reduce(array, z);
while (--n > 0) {
ImplSquare(z, array);
Reduce(array, z);
}
}
public static uint Trace(ulong[] x)
{
return (uint)((int)x[0] & 1);
}
private static void ImplCompactExt(ulong[] zz)
{
ulong num = zz[0];
ulong num2 = zz[1];
ulong num3 = zz[2];
ulong num4 = zz[3];
ulong num5 = zz[4];
ulong num6 = zz[5];
ulong num7 = zz[6];
ulong num8 = zz[7];
zz[0] = (num ^ (num2 << 49));
zz[1] = ((num2 >> 15) ^ (num3 << 34));
zz[2] = ((num3 >> 30) ^ (num4 << 19));
zz[3] = ((num4 >> 45) ^ (num5 << 4) ^ (num6 << 53));
zz[4] = ((num5 >> 60) ^ (num7 << 38) ^ (num6 >> 11));
zz[5] = ((num7 >> 26) ^ (num8 << 23));
zz[6] = num8 >> 41;
zz[7] = 0;
}
private static void ImplExpand(ulong[] x, ulong[] z)
{
ulong num = x[0];
ulong num2 = x[1];
ulong num3 = x[2];
ulong num4 = x[3];
z[0] = (num & 562949953421311);
z[1] = (((num >> 49) ^ (num2 << 15)) & 562949953421311);
z[2] = (((num2 >> 34) ^ (num3 << 30)) & 562949953421311);
z[3] = ((num3 >> 19) ^ (num4 << 45));
}
private static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz)
{
ulong[] array = new ulong[4];
ulong[] array2 = new ulong[4];
ImplExpand(x, array);
ImplExpand(y, array2);
ulong[] u = new ulong[8];
ImplMulwAcc(u, array[0], array2[0], zz, 0);
ImplMulwAcc(u, array[1], array2[1], zz, 1);
ImplMulwAcc(u, array[2], array2[2], zz, 2);
ImplMulwAcc(u, array[3], array2[3], zz, 3);
for (int num = 5; num > 0; num--) {
zz[num] ^= zz[num - 1];
}
ImplMulwAcc(u, array[0] ^ array[1], array2[0] ^ array2[1], zz, 1);
ImplMulwAcc(u, array[2] ^ array[3], array2[2] ^ array2[3], zz, 3);
for (int num2 = 7; num2 > 1; num2--) {
zz[num2] ^= zz[num2 - 2];
}
ulong num3 = array[0] ^ array[2];
ulong num4 = array[1] ^ array[3];
ulong num5 = array2[0] ^ array2[2];
ulong num6 = array2[1] ^ array2[3];
ImplMulwAcc(u, num3 ^ num4, num5 ^ num6, zz, 3);
ulong[] array3 = new ulong[3];
ImplMulwAcc(u, num3, num5, array3, 0);
ImplMulwAcc(u, num4, num6, array3, 1);
ulong num7 = array3[0];
ulong num8 = array3[1];
ulong num9 = array3[2];
zz[2] ^= num7;
zz[3] ^= (num7 ^ num8);
zz[4] ^= (num9 ^ num8);
zz[5] ^= num9;
ImplCompactExt(zz);
}
private static void ImplMulwAcc(ulong[] u, ulong x, ulong y, ulong[] z, int zOff)
{
u[1] = y;
u[2] = u[1] << 1;
u[3] = (u[2] ^ y);
u[4] = u[2] << 1;
u[5] = (u[4] ^ y);
u[6] = u[3] << 1;
u[7] = (u[6] ^ y);
uint num = (uint)x;
ulong num2 = 0;
ulong num3 = u[num & 7] ^ (u[(num >> 3) & 7] << 3);
int num4 = 36;
do {
num = (uint)(x >> num4);
ulong num5 = u[num & 7] ^ (u[(num >> 3) & 7] << 3) ^ (u[(num >> 6) & 7] << 6) ^ (u[(num >> 9) & 7] << 9) ^ (u[(num >> 12) & 7] << 12);
num3 ^= num5 << num4;
num2 ^= num5 >> -num4;
} while ((num4 -= 15) > 0);
z[zOff] ^= (num3 & 562949953421311);
z[zOff + 1] ^= ((num3 >> 49) ^ (num2 << 15));
}
private static void ImplSquare(ulong[] x, ulong[] zz)
{
zz[6] = (x[3] & 1);
Interleave.Expand64To128(x, 0, 3, zz, 0);
}
}
}